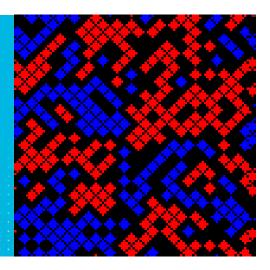


Clean-Slate Design of MANETs via Locally Coupled Particle Systems (LCPS)

Subtopic Area: Theory



Sem Borst, Piyush Gupta, Iraj Saniee Bell Labs, Alcatel-Lucent

DARPA Workshop, August 7-8, 2013

Outline

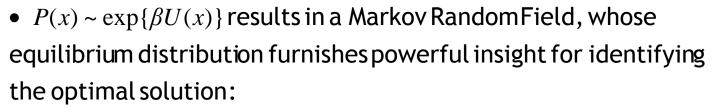
- LCPS model
- LCPS (asymptotic) solution -- algorithm
- Application Case 1: Single-Hop Random Access Networks
- Application Case 2: OFDMA Cellular Wireless Networks
- Application Case 3: Large-Scale MANETs
 - Resource sharing: Channel selection, client association, scheduling, power allocation
 - Routing: Backbone routing, geographic routing and other schemes
- Proposed plan
 - Asymptotic analysis for *given* routing
 - Simulation to validate and begin integration with networking protocol

Distributed Optimization in Locally-Coupled Systems: Methodology

- Consider networked system represented by graph G with nodes $v \in V$ and edges $(v, w) \in E$
- Goal: Maximize global objective function which is the sum of local utilities:

$$\max_{\mathbf{x} \in S} U(\mathbf{x}), \text{ where } U(\mathbf{x}) = \sum_{\mathbf{v} \in V} u_{\mathbf{v}}(\mathbf{x}_{N_{\mathbf{v}}^{+}})$$

 $u_v(x_{N_v^+})$ = utility of node v depends only on its state x and its neighbors, i.e., $N_v^+ = \{w: (v,w) \in E\} \cup \{v\}$



U(x) is maximized as a limit of Gibbs measure

$$P_{\beta}(x) = \exp{\{\beta U(x)\}} / \sum_{s \in S} \exp{\{\beta U(s)\}} \Rightarrow$$

$$\lim_{\beta \to \infty} P_{\beta}(x^*) = 1 \text{ for } x^* = \arg \max_{x \in S} U(x)$$

Distributed Optimization in Locally-Coupled Systems: Optimal Solution

- Global optimum for U(x) is obtained with high likelihood by sampling from Gibbs distribution, $P_{\beta}(x)$, as follows:
- -- Pick a node *v* in *V*
- -- Given current state x_{y} of all other nodes, select new state x_{y} with probability

$$P_{\beta}(x_{v} \mid x_{-v}) \leftarrow P_{\beta}(x_{v}, x_{-v}) / \sum_{y_{v}} P_{\beta}(y_{v}, x_{-v})$$

- We recently showed* that in a LCPS computing $P_{\beta}(x_{\nu} \mid x_{-\nu})$ requires only knowledge of the two-tier neighborhood structure
- Generates sequence of random variables converging to above Gibbs distribution, and hence yields global optimum for U(x) for large values of β a.s.

^{*} S. Borst, M. Markakis, and I. Saniee, "Non-concave utility maximization in locally coupled systems, with applications to wireless and wireline networks," to appear IEEE/ACM Transactions on Networking, 2013.

Alcatel·Lucent

Simple Example: Single Channel with 2 Power Levels -- 1

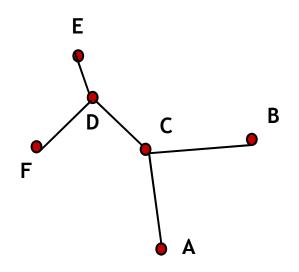
Neighborho ods

- $\bullet N_A^+ = \{C\} \cup \{A\}, N_B^+ = \{C\} \cup \{B\}, N_C^+ = \{A, B, D\} \cup \{C\}$
- $\bullet N_E^+ = \{D\} \cup \{E\}, N_F^+ = \{D\} \cup \{F\}, N_D^+ = \{E, F, C\} \cup \{D\}$

States

- Local state, power levels : $P_A \in \{0, p\}$, etc.
- Neighborho od state, power levels: $P_{N_A^+} = P_{\{A,C\}} = (P_A, P_C)$,

$$P_{N_{C}^{+}} = P_{\{\mathsf{A},\mathsf{B},\mathsf{D},\mathsf{C}\}} = (P_{A},P_{B},P_{C},P_{D}), etc.$$



Local utility functions depend on neighborhood states

• $u_A(P_A, P_C)$, $u_B(P_B, P_C)$, $u_C(P_C, P_A, P_B, P_D)$, $u_E(P_E, P_D)$, $u_F(P_F, P_D)$, $u_D(P_D, P_E, P_F, P_C)$ where for a log utility function we have

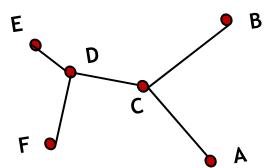
rate

$$u_{C}(P_{N_{C}^{+}}) = u_{C}(P_{C}, P_{A}, P_{B}, P_{D}) = \log(\log(1 + \frac{g_{C}P_{C}}{g_{A}P_{A} + g_{B}P_{B} + g_{D}P_{D} + \eta}))$$

Alcatel·Lucent 1

Simple Example: Single Channel with 2 Power Levels -- 2

Total utility : $U(\mathbf{P}) = \sum_{v \in V} u_v(P_{N_v^+})$



Solution

$$P_{A}(t+1) = \begin{cases} 0 \\ p \end{cases} \text{ with probabilities } \sim e^{\beta(U(\text{A picks power 0 \& all other nodes pick current power}))} \\ \sim e^{\beta(U(\text{A picks power p \& all other nodes pick current power}))} \\ = \begin{cases} 0 \\ p \end{cases} \text{ with probabilities } \sim e^{\beta(U(P_{A}=0,P_{-A}(t)))} \\ \sim e^{\beta(U(P_{A}=0,P_{-A}(t)))} \\ \sim e^{\beta(U(P_{A}=0,P_{-A}(t)))} \end{cases}$$

By local coupling

$$P_{A}(t+1) = \begin{cases} 0 \text{ with probabilities} & e^{\beta(u_{A}(0,P_{N_{A}}(t)) + u_{C}(0,P_{N_{C}^{+}\setminus\{A\}}(t))} \\ \rho & e^{\beta(u_{A}(p,P_{N_{A}}(t)) + u_{C}(p,P_{N_{C}^{+}\setminus\{A\}}(t))} \end{cases}$$

 P_A updates requires states of B, C and D but not E & F, etc.

What Does LCPS Tell Us That We Didn't Know Before?

LCPS massively reduces the state for computation of $U(\mathbf{P}) = \sum_{v \in V} u_v(P_{N_v^+})$

becasue:

- 1. Gibbs-type procedure requires computation of $e^{\beta(U(P_A=0,P_{-A}))}$ for (randomized) state update
- 2. But by LCPS

$$U(P_A, P_{-A}) = u_A(P_A, \sum_{v \in N_A^+} u_v(P_v))$$

$$= u_A(P_A, P_{N_A}) + \sum_{v \sim A} u_v(P_{N_v^+}) + U_{-A} \text{ (independent of A)}$$
Two-tier neighborhood of A

thus updates can be computated by looking at only 2-hop neighborhoods

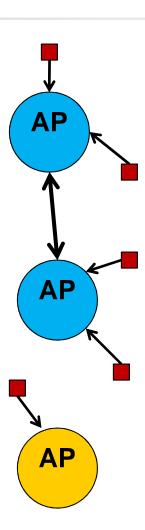
3. Also, to compute probabilities we don't need U_{-A} (independent of A)

Application Case 1: Single-Hop Random Access Multiple AP

- A system consisting of several access points (APs) and clients operating in a number of channels
- Goal: Efficient resource allocation to clients in fair manner with minimal coordination among APs
- Optimization problem:

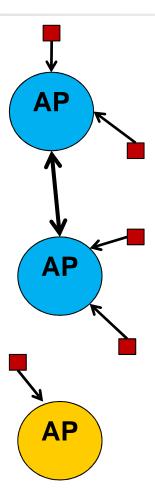
$$\max U = \sum w_i \log r_i$$

- r_i = throughput of client i
- well-known to achieve proportional fairness
- Resource allocation involves:
 - Choosing the channel to operate in for each AP (Channel Selection)
 - Choosing the AP to associate with for each client (Client Association)
 - Choosing channel access rate for each AP (Access)
 - Scheduling clients for each AP (Scheduling)

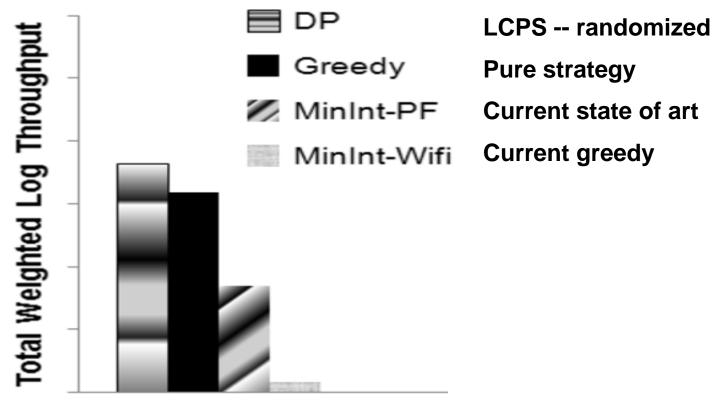


Application Case 1: Solution Overview

- Optimal proportional fairness achieved by jointly solving 4 problems
- Scheduling and Access are updated on fast time scale
- Client Association (CA) & Channel Selection (CS) on slow time scale
- Scheduling & Access can be solved analytically
- For CA and CS, need to consider how the solutions affect
 Scheduling and Access non convex
- Solved through Gibbs sampler
 - Maximize system utility: $U = \sum w_i \log r_i$
 - APs/clients make decisions locally and randomly, favoring those resulting in better utility
 - CA: $p(i,n) \sim B_{i,n,c(n)} \prod_{o \in \mathcal{M}^n(\psi)} \frac{z^o}{z^o + w^o}$ Data Rate Interference Channel Congestion
 - Converges to global optimum allocation a.s.
 - Greedy policy for faster convergence
- Traditional approaches based on separation sub-optimal



Application Case 1: Key Performance Benchmarks



16 APs, 50 clients, 7 channels

I. Hou and P. Gupta, "Distributed resource allocation for proportional fairness in multi-band wireless systems," Procs. 2011 IEEE Intl. Symposium on Information Theory, St. Petersburg, July 31-Aug 5, 2011.

Application Case 2: OFDMA Cellular Wireless Networks

- System consisting of several possibly interfering access points (APs) and clients operating on multiple frequencies
- Maximize aggregate throughput utility of clients with minimal exchange of state information among APs
- Optimization problem:

$$max \sum U(r_i)$$

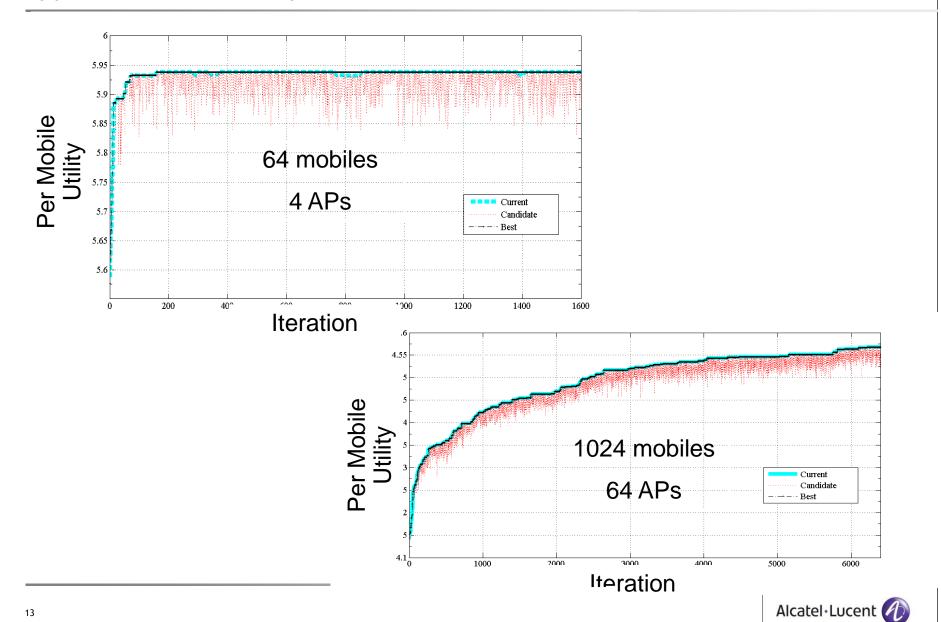
s.t. $r_i \ge r_{i,min}$

- r_i = throughput of client i
- $r_{i,min}$ = minimum throughput requirement of client i
- U() = arbitrary (possibly non-concave) throughput utility function
- Resource allocation involves three interrelated decisions:
 - Allocating power levels to various frequencies at each AP (Power allocation)
 - Selecting AP to associate with for each client (Client association)
 - Assigning time allotments to various clients at each AP (Scheduling)

Application Case 2: Solution Algorithm

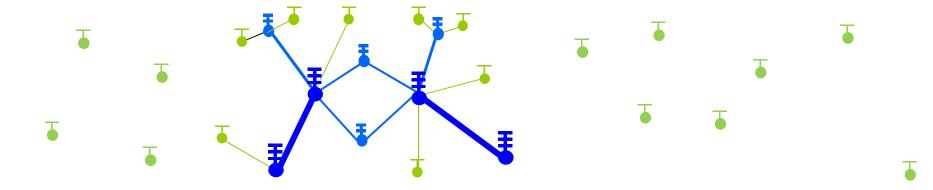
- Three sets of decision variables:
 - P_{ik}: power level allocated by AP k to frequency j
 - Q_{ik}: binary variable whether or not client i associates with AP k
 - T_{iik}: time allotment assigned to client i on frequency j by AP k
- Optimization is mixed-integer possibly non-concave problem
- Solution algorithm consists of three components:
 - APs update power allocations taking into account impact on neighboring APs due to interference
 - Clients update association decisions taking into account impact on APs due to congestion
 - APs maintain time fractions through scheduling in strictly local fashion
- Experimental results for up to 16 APs, 16 frequencies and 1024 clients show relatively swift convergence to stable operating point

Application Case 2: Experimental Results



Case 3: Application to Massive MANETs Using Dynamic Reconfigurable Backbone

- Establish and maintain a dynamic backbone
 - In heterogeneous settings, utilizing higher-power nodes
 - Each node is within a single hop of the backbone



- Apply LCPS-based approaches discussed earlier for efficient transfer of traffic to/from nodes to the backbone
 - Backbone nodes act as APs to other nodes in their neighborhood
- Efficient design of backbone
 - Number of approaches in literature including geographic routing

Case 4: Application to Massive MANETs with Assigned (Geographic) Routing

- We know from mobile, email, and other communication that the total number of interactions between N nodes is typically not O(N²) but O(N)
- Depending on geometry of MANET, the average number of end-to-end flows per link varies from O(1) to O(N) – square grid to tree topologies
- In case of O(1) each node needs to
 - Keep track of state for a small number of flows
 - Forward packets/content to next hop according to geographic route
- Rate control may be achieved in multiple ways
 - Associating a virtual node with every link and updating end-to-end rates according to a Gibbs-like scheme for general utility functions
 - Using backpressure via queue length in forwarding packets for concave utility functions
- This is now similar to the previous cases where each node makes a randomized decision on power, channel and which packet to schedule according to Gibbs-like distribution

Next Steps

- Linkage between LCPS with routing (backbone, geographic or other protocols) to determine convergence rate, which needs to be quantified
- Report on scalability of resulting LCPS-based MANET to 1000s of nodes via asymptotic and numerical analysis of joint LCPS and routing mechanism and evaluate convergence rate
- Depending on outcome of above, collaborate on a protocol design that incorporates LCPS and routing and simulate on a high fidelity platform

www.alcatel-lucent.com	

Used with permission. The views expressed are those of the author and do not reflect the official policy or position of DARPA, the Department of Defense, or the U.S. Government.